Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Вятский государственный гуманитарный университет»

Дополнительная подготовка школьников по дисциплине «Информатика и информационные технологии»

Учебный модуль Системы счисления

Е. В. Котельников

СОДЕРЖАНИЕ

1. Позиционные и непозиционные системы счисления	3
1.1. Основные понятия	3
1.2. Непозиционные системы счисления	4
1.3. Позиционные системы счисления	5
2. Единственность представления чисел в Р-ичных системах счисления.	7
3. Арифметические операции в Р-ичных системах счисления	10
3.1. Сложение	10
3.2. Вычитание	11
3.3. Умножение	12
3.4. Деление	13
4. Переводы чисел	15
4.1. Перевод из Р-ичной системы счисления в десятичную	15
4.2. Перевод из десятичной системы счисления в Р-ичную	15
4.3. Перевод чисел между двоичной, восьмеричной и шестнадцатери	ичной
системами счисления	17
5. Нетрадиционные системы счисления	20
6. Задания для самостоятельной работы	21
Литература	22

1. Позиционные и непозиционные системы счисления

1.1. Основные понятия

Cистема счисления — правило записи чисел с помощью заданного набора специальных символов — $\mu u \phi p$.

Совокупность цифр, используемых в системе счисления, называется алфавитом системы счисления.

Существуют два основных вида систем счисления – непозиционные и позиционные.

В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающей число.

Базис позиционной системы счисления — это возрастающая последовательность чисел, отвечающих за веса цифр.

Если базис образуют члены геометрической прогрессии вида

...,
$$P^{-2}$$
, P^{-1} , 1, P , P^{2} , P^{3} , ...

то такую систему счисления называют традиционной.

Oснованием традиционной системы счисления называется знаменатель P геометрической прогрессии, члены которой образуют базис системы счисления. Основание соответствует количеству цифр, используемых в системе счисления.

К традиционным относится, например, десятичная система счисления, основание которой равно 10, а базис составляют числа:

Традиционную систему счисления с основанием P называют P-ичной системой счисления.

Некоторые нетрадиционные системы счисления будут рассмотрены в конце этого модуля.

Если из контекста неясно, в какой системе счисления записано число, указывают основание системы счисления нижним индексом: 125_{10} .

1.2. Непозиционные системы счисления

Примерами непозиционных систем счисления являются унарная и римская системы счисления.

В *унарной* системе счисления используется единственная цифра -1, а число обозначается соответствующим количеством единиц.

Пример. Число 3 в унарной системе счисления обозначается 111, а число 7-1111111.

Таким образом, когда при подсчете чего-либо мы используем палочки, или зарубки, или какую-либо другую единственную отметку, оказывается, мы применяем унарную систему счисления.

В *римской* системе счисления цифр намного больше и все они являются буквами латинского алфавита:

$$I = 1$$
, $V = 5$, $X = 10$, $L = 50$, $C = 100$, $D = 500$, $M = 1000$.

Число составляется по следующим правилам.

- 1. Если меньшая цифра стоит слева от большей, то меньшая цифра вычитается из большей. Обычно используют 6 примеров применения этого правила: IV = 4, IX = 9, XL = 40, XC = 90, CD = 400, CM = 900.
- 2. Если меньшая цифра стоит справа от большей, то обе цифры складываются. Одинаковые цифры так же складываются.

Пример. VIII = 8, XXIX = 29, LV = 55, XLV = 45, CCC = 300, MCM = 1900, MMXI = 2011.

Как видно из примеров, вес любой цифры, как в унарной, так и в римской системах счисления не зависит от её позиции в числе, в отличие от веса цифр в позиционных системах счисления.

Римская система счисления до сих пор достаточно часто используется на практике, в основном в тех случаях, когда не требуется представлять большие числа и выполнять с ними сложные арифметические операции, например, при обозначении веков, времени на циферблатах часов, номеров глав в книгах и т. д.

Непозиционными системами счисления также являются биномиальная система счисления, система остаточных классов, древнеегипетская система счисления и некоторые другие.

1.3. Позиционные системы счисления

Общеизвестным примером позиционной системы счисления является *десятичная* система счисления с основанием 10, использующая арабские цифры. Вес цифры в десятичной записи числа связан с местоположением цифры. Позиция цифры в числе называется *разрядом*.

Пример. В десятичной системе счисления в числе 55,5 первая пятерка означает 50, вторая -5, а третья -0,5.

Пример. Разряды нумеруются, начиная с запятой, отделяющей целую часть числа от дробной. Цифры целой части нумеруются положителными числами, дробной части — отрицательными. Запишем десятичное число 789, 45 с номерами разрядов:

Существуют две формы записи чисел:

1) свернутая (обычная форма записи):

$$a_n a_{n-1} \dots a_1, a_0 a_{-1} \dots a_{-m},$$

где a_i – цифры числа.

Пример: 789,45₁₀.

2) Развернутая, которая получается с использованием основания системы счисления и номеров разрядов:

$$A = a_n P^n + a_{n-1} P^{n-1} + \dots + a_1 P^1 + a_0 + a_{-1} P^{-1} + \dots + a_{-m} P^{-m}.$$
 (1)

Пример: $789,45_{10} = 7 \cdot 10^2 + 8 \cdot 10^1 + 9 + 4 \cdot 10^{-1} + 5 \cdot 10^{-2}$.

За основание позиционной системы счисления можно принять любое целое число, большее единицы – 2, 3, 4 и т. д. В информатике, кроме широко используются десятичной системы счисления, двоичная, восьмеричная и шестнадцатеричная системы счисления. Выбор двоичной системы счисления связан с удобством аппаратной реализации двоичного кодирования информации В компьютере, восьмеричная И шестнадцатеричная применяются для краткой записи двоичных чисел.

В двоичной системе счисления используются всего 2 цифры -0 и 1, в восьмеричной 8 цифр - от 0 до 7. В шестнадцатеричной системе счисления должно быть 16 цифр, но поскольку арабских цифр всего 10 (от 0 до 9), то после девятки используются латинские буквы:

$$A = 10$$
, $B = 11$, $C = 12$, $D = 13$, $E = 14$, $F = 15$.

2. Единственность представления чисел в Р-ичных системах счисления

Теорема. Пусть P — произвольное натуральное число, большее единицы. Существует и единственно представление любого натурального числа A в виде:

$$A = a_n P^n + a_{n-1} P^{n-1} + \dots + a_1 P + a_0,$$
 (2)

где $0 \le a_i < P$, $0 \le i \le n$, $a_n \ne 0$.

Доказательство.

Cуществование. Построим для произвольного натурального числа A представление (2).

Поскольку числа P^0 , P^1 , P^2 , ... образуют монотонно возрастающую числовую последовательность, то существует такое натуральное число n, что

$$P^n \le A < P^{n+1}.$$

Разделим интервал $[P^n; P^{n+1}]$ на P-1 равных частей. Получим интервалы $[P^n; 2 \cdot P^n]$, $[2 \cdot P^n; 3 \cdot P^n]$, ..., $[(P-1) \cdot P^n; P \cdot P^n]$. Длина каждого интервала равна P^n .

Из (2) следует, что число A попадет в один из указанных интервалов, т. е. существует такое $k \in [1; P)$, что

$$kP^n \le A < (k+1)P^n. \tag{3}$$

Положим $a_n = k$. При этом $a_n \neq 0$.

Обозначим разность между числом A и левой границей интервала (3) как $B = A - a_n P^n$. Найдем коэффициент a_{n-1} для числа B.

Если B = 0, то построение завершено.

Если B < P, то полагаем $a_{n-1} = B$ и построение также завершается.

Иначе для нахождения a_{n-1} действуем по приведенному выше алгоритму, а затем находим коэффициент a_{n-2} для числа $B-a_{n-1}P^{n-1}$ и т. д.

Процесс всегда закончится, поскольку на каждом шаге рассматривается число, меньшее чем на предыдущем шаге.

В итоге получим разложение (2).

Единственность. Используем доказательство от противного.

Предположим, что число A имеет два различных разложения вида (2):

$$A_{1} = a_{n}P^{n} + a_{n-1}P^{n-1} + \dots + a_{1}P + a_{0},$$
(4)

$$A_2 = b_m P^m + b_{m-1} P^{m-1} + \dots + b_1 P + b_0.$$
 (5)

Докажем сначала, что m=n. Предположим, что m>n (или $m\geq n+1$). Покажем, что в этом случае $A_2>A_1$. Найдем минимальное число для разложения (5), учитывая, что $a_n\neq 0$. Для минимального числа коэффициенты будут равны:

$$b_m = 1$$
, $b_{m-1} = b_{m-2} = \dots = b_1 = b_0 = 0$,

тогда

$$A_2 \ge 1 \cdot P^m + 0 \cdot P^{m-1} + \ldots + 0 \cdot P^1 + 0 = P^m,$$

$$A_2 \ge P^m.$$

Найдем максимальное число для разложения (4). Коэффициенты будут равны:

$$a_n = a_{n-1} = \dots = a_1 = a_0 = P - 1.$$

$$A_1 \le (P-1) \cdot P^n + (P-1) \cdot P^{n-1} + \dots + (P-1) \cdot P^1 + (P-1).$$

По формуле суммы членов геометрической прогрессии получаем:

$$A_{\scriptscriptstyle 1} \le P^{\scriptscriptstyle n+1} - 1$$

или

$$A_{\scriptscriptstyle 1} < P^{\scriptscriptstyle n+1} \, .$$

Поскольку предполагали, что $m \ge n + 1$, то

$$A_1 < P^{n+1} \le A_2.$$

Таким образом, $A_1 < A_2$. Следовательно, если $A_1 = A_2$, то n = m и разложение (5) имеет вид:

$$A_2 = b_m P^n + b_{m-1} P^{n-1} + \ldots + b_1 P + b_0.$$
 (6)

Докажем, что $a_n = b_n$. Снова используем доказательство от противного. Пусть $a_n > b_n$ (например, $a_n = b_n + 1$). Рассмотрим разность:

$$A_1 - A_2 = P^n - (a_{n-1} - b_{n-1})P^{n-1} - \dots - (a_1 - b_1)P - (a_0 - b_0).$$

Найдем минимальное число — нижнюю границу разности. Для этого положим все $a_i = P - 1$, все $b_i = 0$, $i \in [0; n)$:

$$A_1 - A_2 \ge P^n - [(P-1)P^{n-1} + (P-1)P^{n-2} + \dots + (P-1)P - (P-1)] = 1.$$

Следовательно, $A_1 \neq A_2$, поэтому $a_n = b_n$.

Далее докажем, что $a_i = b_i$, $i \in [0;n)$. Предположим, что существует некоторое k, при котором $a_k \neq b_k$, но $a_i = b_i$ при $i \in (k;n]$. Рассмотрим числа:

$$\begin{split} B_1 &= A_1 - a_n P^n - a_{n-1} P^{n-1} - \ldots - a_{k+1} P^{k+1} = a_k P^k + a_{k-1} P^{k-1} + \ldots + a_1 P + a_0, \\ B_2 &= A_2 - b_n P^n - b_{n-1} P^{n-1} - \ldots - b_{k+1} P^{k+1} = b_k P^k + b_{k-1} P^{k-1} + \ldots + b_1 P + b_0. \end{split}$$

Найдя разность B_1-B_2 и повторяя предыдущие рассуждения, получим, что при $a_k \neq b_k$ разность $B_1-B_2 > 0$, следовательно, $B_1 \neq B_2$ и $A_1 \neq A_2$.

Таким образом, получили противоречие с утверждением о том, что число A имеет разные представления (4) и (5). Следовательно, $a_i = b_i$ при $i \in [0;n], m=n$, т. е. представление (2) для любого числа единственно, что и требовалось доказать.

3. Арифметические операции в Р-ичных системах счисления

3.1. Сложение

При выполнении операции сложения в позиционных системах счисления используют таблицы сложения. Приведем таблицы сложения для нескольких систем счисления.

Таблица 1. Сложение в двоичной системе счисления

	0	1
0	0	1
1	1	10

Таблица 2. Сложение в десятичной системе счисления

	1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9	10
2	3	4	5	6	7	8	9	10	11
3	4	5	6	7	8	9	10	11	12
4	5	6	7	8	9	10	11	12	13
5	6	7	8	9	10	11	12	13	14
6	7	8	9	10	11	12	13	14	15
7	8	9	10	11	12	13	14	15	16
8	9	10	11	12	13	14	15	16	17
9	10	11	12	13	14	15	16	17	18

Таблица 3. Сложение в шестнадцатеричной системе счисления

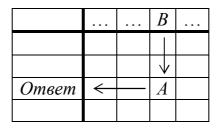
	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F	10
2	3	4	5	6	7	8	9	A	В	С	D	Е	F	10	11
3	4	5	6	7	8	9	A	В	C	D	Е	F	10	11	12
4	5	6	7	8	9	A	В	C	D	Е	F	10	11	12	13
5	6	7	8	9	A	В	C	D	Е	F	10	11	12	13	14
6	7	8	9	A	В	C	D	Е	F	10	11	12	13	14	15
7	8	9	A	В	C	D	Е	F	10	11	12	13	14	15	16
8	9	A	В	C	D	Е	F	10	11	12	13	14	15	16	17
9	Α	В	C	D	Е	F	10	11	12	13	14	15	16	17	18
A	В	C	D	Е	F	10	11	12	13	14	15	16	17	18	19
В	C	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A
C	D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B
D	Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
Е	F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D
F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E

Из приведенных таблиц видно, что если сумма двух цифр является двузначным числом, то первая цифра суммы всегда будет равна 1.

Примеры.

3.2. Вычитание

При вычитании из большего числа меньшего также используются таблицы сложения. Только в этом случае результатом будет не число на пересечении строки и столбца, как при сложении, а цифра в начале строки. Предположим, нужно вычесть из цифры A цифру B и $A \ge B$. Тогда нужно в столбце для цифры B найти строку с цифрой A и ответом будет цифра в начале этой строки:



Если A < B, тогда нужно занимать единицу из старшего (ближайшего левого) разряда и вычитание A - B заменяется на вычитание 1A - B, поскольку:

$$10 + A - B = 1A - B$$

Следовательно, в столбце для цифры B нужно искать строку с числом IAи ответом по-прежнему будет цифра в начале этой строки:

		 В	
		\rightarrow	
Ответ	\leftarrow	 <i>1A</i>	

Примеры.

3.3. Умножение

Для выполнения операции умножения используются таблицы сложения и умножения.

Таблица 4. Умножение в двоичной системе счисления

	0	1
0	0	0
1	0	1

Таблица 5. Умножение в шестнадцатеричной системе счисления

	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
1	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
2	2	4	6	8	A	C	Е	10	12	14	16	18	1A	1C	1E
3	3	6	9	C	F	12	15	18	1B	1E	21	24	27	2A	2D
4	4	8	C	10	14	18	1C	20	24	28	2C	30	34	38	3C
5	5	A	F	14	19	1E	23	28	2D	32	37	3C	41	46	4B
6	6	C	12	18	1E	24	2A	30	36	3C	42	48	4E	54	5A
7	7	Е	15	1C	23	2A	31	38	3F	46	4D	54	5B	62	69
8	8	10	18	20	28	30	38	40	48	50	58	60	68	70	78
9	9	12	1B	24	2D	36	3F	48	51	5A	63	6C	75	7E	87
A	A	14	1E	28	32	3C	46	50	5A	64	6E	78	82	8C	96
В	В	16	21	2C	37	42	4D	58	63	6E	79	84	8F	9A	A5
C	C	18	24	30	3C	48	54	60	6C	78	84	90	9C	A8	B4
D	D	1A	27	34	41	4E	5B	68	75	82	8F	9C	A9	B6	C3
Е	Е	1C	2A	38	46	54	62	70	7E	8C	9A	A8	B6	C4	D2
F	F	1E	2D	3C	4B	5A	69	78	87	96	A5	B4	C3	D2	E1

Алгоритм умножения знаком всем с детства и состоит в последовательном умножении первого множителя на цифры второго, начиная с младшей, и сложения полученных сумм.

Примеры.

3.4. Деление

Деление выполняется столбиком и сводится к последовательности операций вычитания и умножения, т. е. требуются таблицы сложения и умножения.

Примеры.

Для всех арифметических операций в системах счисления, отличных от десятичной, можно предложить ещё один подход: перевести все числа в десятичную систему счисления, выполнить операции и перевести числа обратно в исходную систему счисления.

4. Переводы чисел

4.1. Перевод из Р-ичной системы счисления в десятичную

Для перевода числа из P-ичной системы счисления в десятичную нужно записать число в развернутой форме (1), при этом все цифры a_i , основание P и показатели степеней следует представить в десятичной системе счисления.

Пример. Число $1101010,101_2$ перевести в десятичную систему счисления.

Сначала пронумеруем все разряды двоичного числа:

Затем воспользуемся формулой (1) для получения десятичного представления:

$$110101010101_{2} = 1 \cdot 2^{6} + 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{3} = 64 + 32 + 0 + 8 + 0 + 2 + 0 + 0,5 + 0 + 0,125 = 106,625_{10}.$$

Пример. Число A9F,5₁₆ перевести в десятичную систему счисления. Сначала пронумеруем все разряды шестнадцатеричного числа:

Применяем формулу (1), не забывая представить все шестнадцатеричные цифры в десятичном эквиваленте:

$$A9F, 5_{16} = 10 \cdot 16^{2} + 9 \cdot 16^{1} + 15 \cdot 16^{0} + 5 \cdot 16^{-1} = 10 \cdot 256 + 9 \cdot 16 + 15 \cdot 1 + 5 \cdot 0,0625 =$$

$$= 2560 + 144 + 15 + 0,3125 = 2719,3125_{10}$$

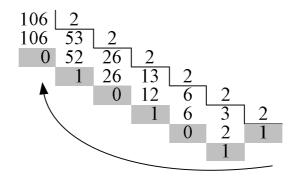
4.2. Перевод из десятичной системы счисления в Р-ичную

Перевод целой и дробной частей десятичного числа в P-ичную систему счисления следует проводить раздельно, объединив затем результаты.

Для перевода uenou части числа из десятичной системы в P-ичную нужно делить число на основание P требуемой системы счисления до тех

пор, пока частное не станет меньше P, а затем записать последнее частное и все остатки от деления в обратном порядке.

Пример. Перевести число 106₁₀ в двоичную систему счисления.



Otbet: $106_{10} = 1101010_2$.

Пример. Перевести число 2719_{10} в шестнадцатеричную систему счисления.

Ответ: $2719_{10} = A9F_{16}$.

Для перевода дробной части десятичного числа нужно умножать число на основание P системы счисления до тех пор, пока произведение не станет равно нулю, или пока не достигнута требуемая разрядность. Дело в том, что десятичная конечная дробь может иметь бесконечное представление в P-ичной системе счисления, поэтому и вводится ограничение на число разрядов. После каждого умножения целая часть отбрасывается, а следующее умножение осуществляется с остатком. По завершении умножения искомое число в P-ичной системе счисления формируется путем выписывания целых частей произведений в порядке их получения.

Пример. Перевести число 0,625₁₀ в двоичную систему счисления.

$$\begin{array}{c|cccc}
 & 0,625 \\
 \times & 2 \\
\hline
 & 1, & 25 \\
 \times & 2 \\
\hline
 & 0, & 5 \\
 \times & 2 \\
\hline
 & 1, & 0
\end{array}$$

Otbet: $0,625_{10} = 0,101_2$.

Пример. Перевести число 0.3125_{10} в шестнадцатеричную систему счисления.

Otbet: $0.3125_{10} = 0.5_{16}$.

4.3. Перевод чисел между двоичной, восьмеричной и шестнадцатеричной системами счисления

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно осуществляется достаточно просто, требуется только знать таблицы перевода.

Таблица 6. Перевод чисел между двоичной и восьмеричной системами счисления

Двоичная	Восьмеричная
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Таблица 7. Перевод чисел между двоичной и шестнадцатеричной системами счисления

Двоичная	Шестнадцатеричная
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	Е
1111	F

Особенность перевода чисел в этих системах счисления заключается в том, что всегда одна восьмеричная цифра соответствует трем двоичным $(2^3 = 8)$, а одна шестнадцатеричная цифра соответствует четырем двоичным $(2^4 = 16)$. Поэтому алгоритмы перевода из двоичной системы счисления сводятся к разбиению двоичного числа, начиная справа, на триады (по три цифры) в случае восьмеричной системы счисления или тетрады (по четыре цифры) в случае шестнадцатеричной и переводе триад или тетрад отдельно в соответствии с приведенными выше таблицами 6 и 7.

Пример. Перевести число 1111001101011_2 в восьмеричную систему счисления.

Разобьем двоичное число на триады, начиная с младшего разряда: $111\ 100\ 110\ 101\ 011_2$.

Переводим триады отдельно по таблице 6:

$$111_2 = 7_8$$
, $100_2 = 4_8$, $110_2 = 6_8$, $101_2 = 5_8$, $011_2 = 3_8$.

Формируем восьмеричное число: 746538.

Пример. Перевести число 1111001101011_2 в шестнадцатеричную систему счисления.

Решаем аналогично, только разбиваем двоичное число на тетрады. Крайняя левая тетрада будет неполной (количество цифр в двоичном числе не кратно 4), поэтому дописываем незначащие нули справа:

$$111100110101011_2 = 01111100110101011_2.$$

Переводим по тетрадам, пользуясь таблицей 7:

$$0111_2 = 7_{16}$$
, $1001_2 = 9_{16}$, $1010_2 = A_{16}$, $1011_2 = B_{16}$.

Записываем ответ: $111100110101011_2 = 79AB_{16}$.

Перевод чисел из восьмеричной и шестнадцатеричной систем счисления происходит поразрядно: каждая цифра в представлении восьмеричного и шестнадцатеричного числа заменяется на триаду или тетраду в соответствии с таблицей 6 или 7.

Пример. Перевести число 74653₈ в двоичную систему счисления.

Воспользуемся таблицей 6 – находим для каждой восьмеричной цифры заданного числа двоичный эквивалент:

$$7_8 = 111_2$$
, $4_8 = 100_2$, $6_8 = 110_2$, $5_8 = 101_2$, $3_8 = 011_2$,

и записываем полученные двоичные числа подряд:

$$74653_8 = 111\ 100\ 110\ 101\ 011_2.$$

Пример. Перевести число 79AB₁₆ в двоичную систему счисления.

По таблице 7 находим двоичные числа, соответствующие шестнадцатеричным в заданном числе:

$$7_{16} = 0111_2$$
, $9_{16} = 1001_2$, $A_{16} = 1010_2$, $B_{16} = 1011_2$,

и записываем двоичные числа подряд:

$$79AB_{16} = 0111\ 1001\ 1010\ 1011_2.$$

5. Нетрадиционные системы счисления

В P-ичных системах счисления, рассмотренных ранее, базисом являлась геометрическая прогрессия вида:

$$\dots, P^{-2}, P^{-1}, 1, P, P^2, P^3, \dots$$

и такие позиционные системы счисления назывались традиционными.

Существуют также *нетрадиционные* системы счисления, базис которых не является геометрической прогрессией. Примером может служить факториальная система счисления. Её базис образует последовательность факториалов:

Алфавит факториальной системы зависит от числа используемых разрядов: если используется n разрядов, то количество цифр равно n+1 (включая ноль).

Ещё одной нетрадиционной системой счисления является фибоначчиева система счисления. Базис этой системы составляют числа Фибоначчи:

В алфавите фибоначчиевой системы счисления, как и в алфавите двоичной, всего две цифры -0 и 1.

6. Задания для самостоятельной работы

- 1. Приведите определения понятий: система счисления, алфавит системы счисления, базис, основание, позиционные и непозиционные системы счисления, Р-ичная система счисления.
 - 2. Переведите числа из римской системы счисления в десятичную: XVIII, XXIX, XLVI, LIII, LXXVIII, XCIV, CXXII, CCC, DCLVI, MMCXXV.
 - 3. Запишите числа в развернутой форме: 573,67₁₀; 1273,12₁₀; 111011,1001₂; 10011011,01₂; ABC,5E₁₆; FA83,AA₁₆.
- 4. Запишите результат сложения для примеров: $110110111_2 + 10010110_2$; $10110101_2 + 1101011_2$; $34DF_{16} + 7AF_{16}$; $8AB_{16} + 79_{16}$.
- 5. Запишите результат вычитания для примеров: $11001000_2-1011011_2;\ 10001000_2-1011011_2;\ 12DC_{16}-9FF_{16};\ 8A7C_{16}-7D81_{16}.$
 - 6. Запишите результат умножения для примеров: $10110111_2 \cdot 1011_2$; $11010110_2 \cdot 1001_2$; $7FDA_{16} \cdot 87_{16}$; $1E84_{16} \cdot FD_{16}$.
- 7. Запишите результат деления для примеров: $11001100_2 / 1001_2$; $11101110_2 / 111_2$; DEAF₁₆ / 8C₁₆.
- 8. Перевести числа из двоичной системы счисления в десятичную и шестнадцатеричную:

 $10110111,1011_2; 110011001100,1101_2; 10100011111111001,111_2.$

9. Перевести числа из десятичной системы счисления в двоичную и шестнадцатеричную:

$$128,675_{10}$$
; $280,54_{10}$; $500,5_{10}$; 1250_{10} .

10. Перевести числа из шестнадцатеричной системы счисления в двоичную и десятичную:

11. Написать на Паскале программу перевода чисел в двоичную, десятичную и шестнадцатеричную системы счисления.

Литература

- 1. Андреева Е. В., Босова Л. Л., Фалина И. Н. Математические основы информатики. Элективный курс: Учебное пособие. М.: БИНОМ. Лаборатория знаний, 2005.
- 2. Гашков С. Б. Системы счисления и их применение. М.: МЦНМО, 2004.
 - 3. Фомин С. В. Системы счисления. 5-е изд. М.: Наука, 1987.